最新求分式函数的定义域(4篇) - 查字典
汉语字典
  • 汉语字典
  • 词语字典
  • 成语词典
  • 近义词
  • 反义词
  • 英语词典
查字典> 范文>最新求分式函数的定义域(4篇)
最新求分式函数的定义域(4篇)
小编:zdfb
时间:2023-01-11 10:51:10

在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。

求分式函数的定义域篇一

甘肃省定西工贸中专文峰分校 张占荣

函数既是中学数学各骨干知识的交汇点,是数学思想,数学方法应用的载体,是初等数学与高等数学的衔接点,还是中学数学联系实际的切入点,因此函数便理所当然地成为了历年高考的重点与热点,考查函数的定义域、值域、单调性、奇偶性、反函数以及函数图象。而对函数值域的考查或是单题形式出现,但更多的是以解题的一个环节形式出现,其中求分式函数的值域更是学生失分较大知识点之一。为此,如何提高学生求分式函数值域的能力,是函数教学和复习中较为重要的一环,值得探讨。下面就本人对分式函数值域的教学作如下探究,不馁之处、敬请同仁指教。

一、相关概念

函数值是指在函数y=f(x)中,与自变量x的值对应的y值。

函数的值域是函数值的集合,是指图象在y轴上的投影所覆盖的实数y的集合。函数的值域由函数的定义域及其对应法则唯一确定;当函数由实际问题给出时,函数的值域由问题的实际意义确定。

分式函数是指函数解析式为分式形式的函数。

二、分式函数的类型及值域解法

类型一:一次分式型

一次分式型是指分子与分母都是关于自变量x(或参数)的一次函数的分式函数。

1.y=(a0)型

例1 求函数y=的值域。

解法一:常数分离法。将y=转化为y=(k1,k2为常数),则yk1 解:∵y==,∴

y。

解法二:反函数法。利用函数和它的反函数的定义域与值域的互逆关系,通过求反函数的定义域,得到原函数的值域。

解:反解y=得x=,对调 y=(x),∴函数y=的值域为

y。

2.y=(a0)型

分析:这是一道含三角函数的一次分式函数,由于含三角函数,不易直接解出x,但其有一个特点:只出现一种三角函数名。可以考虑借助三角函数值域解题,其实质跟y=(t=sinx)在t的指定区间上求值域类似。

即:将y=反解得sinx=f(y),而-1≤sinx≤1,即-1≤f(y)≤1,解之即可。

例2 求函数y=的值域。

解:由y=得,sinx=,∵-1≤sinx≤1,∴-1≤≤1,解之得≤y≤3。

3.y=或y=(a0)型

分析:这道题不仅含有三角函数,且三角函数不同,例2解法行不通,但反解之后会出现正、余弦的和、差形式,故可考虑用叠加法。

即:去分母以后,利用叠加公式和|sinx|≤1解题。

例3 求函数y=

解:∵2cosx+100,∴3sinx-2ycosx=10y+3。的值域。

∴, 其中,由∴和,整理得8y+5y≤0。2得,∴≤y≤0 即原函数的值域为[,0]。

总结:求一次分式函数的值域,首先要看清楚是在整个定义域内,还是在指定区间上;其次用反函数法解题;再次还要注意含三角函数的分式函数,其实质是在指定区间上求分式函数的值域。

类型二:二次分式型

二次分式型是指分子与分母的最高次项至少有一项是关于x的二次函数。由于出现了x2项,直接反解x的方法行不通。但我们知道,不等式、函数、方程三者相互联系,可以相互转化。所以可考虑将其转化为不等式或方程来解题。

1.y=(a、d不同时为0),x∈r型

分析:去分母后,可将方程看作是含参数y的二次方程f(x)=0。由于函数的定义域并非空集,所以方程一定有解,≥0(f(y)≥0),解该不等式便可求出原函数的值域。

≥0(=f(y)),即:用判别式法。先去分母,得到含参数y的二次方程f(x)=0,根据判别式

即可求出值域。

例4 求函数y=的值域。

解:由y=得yx2-3x+4y=0。

当y=0时,x=0,当y≠0时,由△≥0得-

∵函数定义域为r,≤y≤。

∴函数y=的值域为[-,]。

说明:判别式法求二次函数的值域只适用于在整个定义域内,但不能用其在指定的区间上求二次函数的值域,否则就会放大值域。

2.y=(a、d不同时为0),指定的区间上求值域型。

例5 求(x<)的值域。

分析:因为x<,所以若用判别式法,可能会放大其值域。可以考虑使用均值定理解题。解:∵x<,∴5-4x>0,>0。

∴=1-4x+

=[(5-4x)+ ]-

4≥

2=-2,∴原函数的值域为。-4

例6 求的值域。

错解:=≥2。

分析:在使用均值定理时一定要注意使用条件“一定、二正、三相等”,显然上述解法中和不能相等,“相等”条件不能成立。所以不能使用均值定理。但若用判别式法又无法解决根式问题,此时可考虑借函数的单调性求值域。

解:用单调性法

=,令=t,显然t≥2,则y=t

+(t≥2),任取2≤t1≤t2,则f(t1)= t1+, f(t2)= t2+,f(t1)-f(t2)=(t1+)-(t2+)=(t1-t2)(1-),∵2≤t1≤t2∴t1-t2<0, t1· t2≥4, 1->0,∴f(t1)-f(t2)=(t1-t2)(1-)<0。

∴f(t1)< f(t2),即函数y=t+ 在t≥2上单调递增。

∴当t=

2、即=

2、x=0时,ymin

=,∴原函数的值域为。

总结:不管是求一次分式函数,还是求二次分式函数的值域,都必须注意自变量的取值范围。虽然我们提倡通解通法的培养,但一定要看到只有对一类题才可以用通解通法。若失去同一类前提,只强调通解通法,便是空中楼阁。故要因题而论,就事论事,防止一概而论的错误,用辩证和发展的眼光看待问题,这样才会起到事半功倍的效果。

三、提炼知识,总结分式函数值域解法

求函数的值域是高中数学的难点之一,它没有固定的方法和模式。但我们可以针对不同的题型进行归类总结,尽最大可能地寻找不同类型分式函数求值域的通解通法。常用的方法有:

1.反函数法。反函数法是求一次分式函数的基本方法,是利用函数和它的反函数的定义域与值域的互逆关系,通过求反函数的定义域,得到原函数的值域。但要注意看清楚是在整个定义域内,还是在指定区间上求值域。

2.判别式法。判别式法是求二次分式函数的基本方法之一,即先去分母,把函数转化成关于x的二次方程f(x,y)=0,因为方程有实根,所以判别式△≥0,通过解不等式求得原函数的值域。需注意的是判别式法求二次函数的值域只适用于在整个定义域内。

3.不等式法。不等式法是利用基本不等式:a+b≥2(a、b∈r+),是在指定区间上求二次分式函数的基本方法之一,当二次分式函数在指定区间上求值域时可考虑用不等式法。用不等式法求值域,要注意均值不等式的使用条件:“一正、二定、三相等”。

4.换元法。换元法是求复合型分式函数值域的常用方法。当分式函数的分子或分母出现子函数(如三角函数)时,可考虑用换元法,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域。要注意换元后自变量的取值范围。

5.单调性法。单调性法是通过确定函数在定义域(或某个定义域的子集)上的单调性求出函数的值域的方法。

另外,还可以根据函数的特点,利用数形结合或求导数的方法求分式函数的值域。由于这些方法不是很常用,在此就不多做说明

求分式函数的定义域篇二

求函数的值域的常见方法

王远征

深圳市蛇口学校

求函数的值域是高中数学的重点学习内容,其方法灵活多样,针对不同的问题情景,要求解题者,选择合适的方法,切忌思维刻板。本文就已知解析式求函数的值域,这类问题介绍几种常用的方法。

一、直接法

函数值的集合叫做函数的值域,根据定义,由函数的映射法则和定义域,直接求出函数的值域。

例1. 已知函数yx11,x1,0,1,2,求函数的值域。

2解:因为x1,0,1,2,而f1f33,f0f20,f11 所以:y1,0,3,注意:求函数的值域时,不能忽视定义域,如果该例的定义域为xr,则函数的值域为y|y1。请体会两者的区别。

二、反函数法

反函数的定义域就是原函数的值域,利用反函数与原函数的关系,求原函数的值域。例2. 求函数y1

x5的值域。2x1x分析与解:注意到20,由原函数求出用y表示2的关系式,进而求出值域。由y1

x5x2,得:x21因为20,所以y404y1,1y

值域为:y|4y1

三、函数的单调性

例3.求函数yx1在区间x0,上的值域。x

分析与解答:任取x1,x20,,且x1x2,则

fx1fx2

x1x2x1x21,因为0x

x1x

2x2,所以:x1x20,x1x20,当1x1x2时,x1x210,则fx1fx2;

当0x1x21时,x1x210,则fx1fx2;而当x1时,ymin2 于是:函数yx

在区间x0,上的值域为[2,)。x

构造相关函数,利用函数的单调性求值域。例4:求函数fxxx的值域。

1x0

分析与解答:因为1x1,而x与x在定义域内的单调性

1x0

不一致。现构造相关函数gxxx,易知g(x)在定义域内单调增。

gmaxg12,gming12,gx2,0g2x2,又f

xg2x4,所以:2f2x4,2fx2。

四、换元法

对于解析式中含有根式或者函数解析式较复杂的这类函数,可以考虑通过换元的方法将

原函数转化为简单的熟悉的基本函数。当根式里是一次式时,用代数换元;当根式里是二次式时,用三角换元。

例5.求函数y(x5x12)(x5x4)21的值域。

959

分析与解答:令tx25x4x,则t。

424

ytt821t28t21t45,9119

当t时,ymin458,值域为y|y8

416164

例6.求函数yx2x的值域。

分析与解答:令tx,则x1t,t0,y1t22tt1

2当t0时,tmax102201 所以值域为(,1]。

例7.求函数yxxx223的值域。分析与解答:由yxxx223=x令x5

2x5,2cos,因为2x5022cos201cos1,[0,],则2x5=2sin,于是:y

5

2sin2cos52sin5,[,],4444

2

sin1,所以:52y7。24

五、配方法

对解析式配方,然后求函数的值域。此法适用于形如fxaf当要注意fx的值域。

例8.求函数y

xbfxc,2xx23的值域。

(x1)24,于是:

分析与解答:因为2xx30,即3x1,y

0(x1)244,0y2。

1x22x

4例9.求函数y在区间x[,4]的值域。

4x

42x22x4

x6,分析与解答:由y配方得:yx2xxx14

1x2时,函数yx2是单调减函数,所以6y18; 4x4

当2x4时,函数yx2是单调增函数,所以6y7。

x

所以函数在区间x[,4]的值域是6y18。

六、判别式法

把函数yfx同解变形为关于的一元二次方程,利用0,求原函数的值域,此方法适用与解析式中含有分式和根式。

2x22x

3例10.求函数y的值域。

2xx

113

分析与解答:因为xx1x0,原函数变形为:

24

y2x2y2xy30(1)

当y2时,求得y3,所以y2。

当y2时,因为xr,所以一元二次方程(1)有实数根。则:

0,即:y24y2y302y

所以2y

10,3

七、基本不等式法

利用重要不等式ab2ab,a,br求出函数的最值而得出值域的方法。此法的题形特征是:当解析式是和式时,要求积是定值;当解析式是积式时,要求和是定值;为此解答时,常需要对解析式进行恒等变形,具体讲要根据问题本身的特点进行拆项、添项;平方等恒等变形。



x230x

例11.求函数y的值域。

x

2x230x646

4x3234[x2] 分析与解答:y

x2x2x2

因为分母不为0,即x2,所以: 当x2时,x2取等号,ymax18; 当x2时,x2(当且仅当(x2)

2x2

x2

6464,x6时,16,当且仅当x2

x2x2

6464)2x2()16,x2x2

64,x6时,取等号,ymin50; x2

值域y(,18][50,)

注意:利用重要不等式时,要求fx0,且等号要成立。

八、数形结合法

当函数解析式具有某种明显的几何意义(如两点间距离,直线的斜率、截距等)或当一个函数的图象易于作出时,借助几何图形的直观性可求出其值域。例12.如例4求函数yxx的值域。

分析与解答:令ux,vx,则u0,v0,uv2,uvy,22

原问题转化为 :当直线uvy与圆uv2在直角坐标系uov的第一象限有公

共点时,求直线的截距的取值范围。

由图1知:当uvy经过点(0,2)时,ymin当直线与圆相切时,ymaxod所以:值域为2y2

2;

2oc

2

2。

九.利用函数的有界性:形如sinf(y),x2g(y),sin1,x20可解出yr 范围,从而求出其值域或最值。

2x1

例.求函数yx的值域

21

[解析]:函数的有界性

2x1y1由yx得2x

y121

220,

y1

0y1或y1 y1

求分式函数的定义域篇三

一次型分式函数

二、基本函数作图

例1.作下列函数图象

(1);

(2).

归纳1:反比例函数是以坐标轴为渐近线(无限接近)的双曲线,原点是图象的中心对称点;对于(1),点是该双曲线的一个顶点.

归纳2:一般地,函数的图象是双曲线,以坐标轴为渐近线,原点是图象的中心对称点.当时图象分布在一、三象限,图象与直线的交点是双曲线的顶点;当时图象分布在二、四象限,图象与直线的交点是双曲线的顶点.

三、利用平移作图

例2.类比函数的图象到函数的图象的变换,指出由的图象到的图象的变换,并作出函数的图象.

归纳:图象向右平移1个单位;图象向下平移2个单位,等等.

练习:指出函数的图象由那个函数经过怎样的平移得到,并作出函数的图象.

例3.作函数的图象,并归纳一次型分式函数图象与函数函数的图象的关系.

归纳:一次型分式函数本质上是一个反比例函数,两者的图象一般只相差一个平移.

练习:作函数的图象.

四.“二线一点”法作图探究

例4.已知函数.

(1)作函数的图象;

(2)并指出函数自变量x的取值范围(即函数的定义域);因变量y的取值范围(即函数的值域).

(3)x的取值范围,y的取值范围反映在图象上的特点是什么?

(函数图象与直线,没有交点,即,是对应双曲线的渐近线)

(4)找到了双曲线的渐近线,根据双曲线图象的大致形状,只要知道图象在“一、三象限”还是在“二、四象限”就可以画出其大致图象.如何根据函数的解析式直接来确定“象限”?(一般找与坐标轴的交点来确定)

(5)对于一般的一次型分式函数如何来确定渐近线,即确定x与y的取值范围?

(6)观察例4、例3,发现与系数关系.

例5.作函数的图象.

归纳:对于一次型分式函数的作法:

(1)先确定x与y的取值范围:,即找到双曲线的渐近线,;

(2)再取与一个坐标轴的交点确定图象在“一、三象限”还是在“二、四象限”;

(3)根据双曲线的大致形状画出函数的图象.

练习:用平移法与“二线一点”法分别作函数的图象.

五.小结

1.一次型分式函数本质上是一个反比例函数,两者的图象一般只相差一个平移.其图象是双曲线,其中,是双曲线的两条渐近线(曲线与直线无限接近),点是图象的中心对称点.

2.平移法作函数的图象时,先将函数解析式化为,再由图象平移得到.

3.“二线一点”法作函数的图象时,(1)先确定x与y的取值范围:,即找到双曲线的渐近线,;(2)再取与一个坐标轴的交点确定图象在“一、三象限”还是在“二、四象限”;(3)根据双曲线的大致形状画出函数的图象.

六.课后作业

1.若函数的图象过点,则函数图象分布在()

(a)一、四象限(b)二、三象限(c)一、三象限(d)二、四象限

2.函数图象大致形状是()

(a)

(b)

(c)

(d)

3.函数的图象可由下列那个函数图象平移得到()

(a)(b)(c)(d)

4.观察函数的图象可得,当时,y的取值范围为()

(a)(b)(c)(d)或

5.直线与函数图象一个交点的横坐标为,则k=__________.

6.函数在内随着增大而减小,则的取值范围

7.已知函数,则y的取值范围为_______________.

8.函数的图象可由函数向_______(左、右)平移________个单位;再向_________(上、下)平移________个单位得到.

9.函数的图象关于点(1,2)对称,则a=__________;b=___________.

10.已知一次函数y1=x+1,p点是反比例函数(k>0)的图象上的任一点,pa⊥x轴,垂足为a,pb⊥y轴,垂足为b,且四边形aobp(o为坐标原点)的面积为2.

(1)求k的值;

(2)求所有满足y1=y2的x的值;

(3)试根据这两个函数的图象,写出所有满足y1>y2的x的取值范围.(只需直接写出结论)

11.已知函数.

(1)写出函数图象由那个反比例函数图象通过怎样的平移得到;

(2)写出函数图象的渐近线、中心对称点坐标;

(3)用“二线一点”法作出函数图象的大致形状.

12.作出函数图像,并完成下列各题:

(1)当时,求的值;

(2)当时,求取值范围;

(3)当时,求取值范围;

求分式函数的定义域篇四

分式型函数求值域的方法探讨

在教学中,笔者常常遇到一类函数求值域问题,此类函数是以分式函数形式出现,有一次式比一次式,二次式比一次式,一次式比二次式,二次式比二次,现在对这类问题进行探讨。axb(ao,b0)(一次式比一次式)在定义域内求值域。cxd

2x12例1:求f(x)(x)的值域。3x2

3241112(x)122233解:f(x)=0, 23x233x23x233x233(x)3

一、形如f(x)

2其值域为y/y 3

一般性结论,f(x)axbd(ao,b0)如果定义域为x/xcxdc,则值域

ay/y c

例2:求f(x)2x1,x1,2的值域。3x

2分析:由于此类函数图像可以经过反比列函数图像平移得出,所以解决在给定区间内的值域问题,我们可以画出函数图像,求出其值域。

12x1222解:f(x)=,是由y向左平移,向上平移得出,通过图3x233x233x

像观察,其值域为, 35

58

小结:函数关系式是一次式比一次式的时候,我们发现在此类函数的实质是反比例函数通过平时得出的,因此我们可以作出其图像,去求函数的值域。a(a0)的值域。x

分析:此类函数中,当a0,函数为单调函数,较简单,在此我们不做讨论,当a0时,a'对函数求导,f(x)12,f'(x)0时,x(,a)a,),f'(x)0时,x

二、形如求f(x)x

x(a,0)(0,a),根据函数单调性,我们可以做出此类函数的大致图像,其我们常

其图像

4,(x(1,4)上的值域。x

2解:将函数整理成f(x)2(x),根据双钩函数的性质,我们可以判断此函数在(0,2)x例3:求f(x)2x

单调递减,在(2,)上递增,其在2处取最小值,比较1,4出的函数值,我们可以知道在1处取的最大值,所以其值域为42,6 

mxnax2bxc

三、用双钩函数解决形如f(x)(m0,a0),f(x)ax2bxcmxn

(m0,a0)在定义内求值域的问题。

t24t1例3:(2010重庆文数)已知t0,则则函数y的最小值为_______.t

t24t11t4,to由基本不等式地y2 解:ytt

例4:求f(x)x1(x1)的值域。2xx

2解:令x1t,则xt1,则f(x)t1t=,(t1)2(t1)2t23t4t43t7其中t0.则由基本不等式得f(x)

4x22x21(x)的值域。例5:求f(x)2x12

t1t14)222(t12tt222解:令t2x1,则x,f(x)==t1 2ttt,其中t0,由基本式得f(x)22

1小结:对于此类问题,我们一般换元整理后,将函数变成f(x)x2a(a0)这类型的函x

数,解决此类函数注意应用基本不等式,当基本不等式不行的时候,注意应用双勾函数的思想去解决此类问题 ax2bxc(a0,m0)在定义域内求值域。

三、形如f(x)2mxbxc

2x2x1例5:求y2的值域。xx1

分析:当定义域为r时,我们采用判别式法求此类函数的值域。当定义域不为r时,不应采用此法,否则有可能出错。此时,我们要根据函数关系的特征,采用其他方法。

解:xx10恒恒成立,所以此函数的定义域为xr,将函数整理成关于x的方程,2

yx2yxy2x2x1,(y2)x2(y1)x(y1)0,当y20,关于x的方程

2恒有解,则(y1)4(y2)(y1)0,即1y7,显然,y2也成立,所以其3

值域为y/1y7

3

以上是求此类函数的常见方法,但同学们在解题过程中。不要拘泥以上方法,我们要根据具体函数的特征采用相对应的方法,多思考,举一反三,那以后解决此类问题就很容易了。3

查看全部
最新作文
热门事件记录词条
百科分类